Exploring Gluonic Matter with Electron-Ion Collisions

J.H. Lee Brookhaven National Laboratory

Glue in Matter: What do we know

- Gluons responsible for the visible mass and drive the vacuum structure
- NLO QCD and the measurement "broadly similar": limited success
- For smaller values of x, structure function F_2 rises strongly with Q^2 : Simple quark-parton model Bjorken scaling breaks
- Gluons dominate at low-x, but the underlying dynamics and the evolution is not well established

$$\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

How gluons grow

- Saturation regime arises naturally through non-linear BK/ JIMWLK evolution
 - in the Color Glass Condensate (CGC) framework
 - characterized by saturation momentum $Q_s(x,A)$
 - Experimental establishment on the "theoretical evidence" of saturation regime is fundamentally important for understanding of gluonic dynamics - strong interaction

Estimating saturation scale

- Gluonic saturation/recombination
 - number of gluons per unit of transverse area: $\rho \sim xG(x,Q^2)/\pi R^2$
 - cross-section for gluon recombination: $\sigma \sim \alpha_s/Q^2$
 - saturation occurs when $I < \rho \sigma \Rightarrow$ $Q^2 < Q_s^2(x)$

- Qs $\propto x^{1/3}$ (phenomenological "geometrical scaling" at HERA)
- - Nuclear enhanced saturation scale
 - To access saturation: increase energy $(\sim 1/x)$ or increase Q_s $(\sim A^{1/3})$
 - HERA (ep) energy range higher $G(x,Q^2)$ very limited reach of the saturation regime: Need $\sqrt{s=1-2}$ TeV in ep

Initial gluon distribution matters in RHI collisions

Understanding initial gluon dynamics

PRL 108 (2002) Schenke, Tribedy, Venugopalan

Hirano et al. arXiv:1204.5814 (2002)

Understanding initial dynamics is important for the quantitative interpretation of the medium created in relativistic heavy ion collisions.

Electron-Ion Collider (EIC) exploring gluons (and sea quarks) beyond HERA

- e + Ion : nuclear enhanced (~x300) effective small-x reach - deeply into saturation regime
- wide energy range: kinematic coverage with great leverage for measuring gluon distribution F_L ($\sqrt{s_A}$ =~10-100 GeV)
- high luminosity (~x500 of HERA):
 rare and precision probe for gluonic
 properties: heavy flavor, exclusive
 measurements, ...
- polarized e and p: gluonic contribution to spin degree of freedom of nucleon

Characterizing glue in matter with EIC

- Precisely mapping momentum and space-time distribution of gluons in nuclei in wide kinematic range including saturation regime through:
 - Inclusive measurements of structure functions (F_2,F_L,F_2^D,F_L^D) : $eA\rightarrow eX$, $eA\rightarrow eX+gap$
 - Semi-inclusive measurements of final state distributions: $eA \rightarrow eA\{\pi,K,\Phi,D,J/\Psi...\}X$
 - Exclusive final states: $eA \rightarrow eA\{\rho,\Phi,J/\Psi,\gamma\}$
- Multiple controls: x, Q^2 , t, M_X^2 for light and heavy nuclei

e+A physics science matrix: Key measurements

Deliverables	Observables	What we learn	Phase-I	Phase-II
integrated gluon distributions	F _{2,L}	nuclear wave function; saturation, Q _s	gluons at 10 ⁻³ < x < 1	saturation regime
k⊤ dependent gluons; gluon correlations	di-hadron correlations	non-linear QCD evolution / universality	onset of saturation	measure Q _s
transport coefficients in cold matter	large-x SIDIS; jets	parton energy loss, shower evolution; energy loss mechanisms	light flavors and charm; jets	rare probes and bottom; large-x gluons
b dependence of gluon distribution and correlations	Diffractive VM production and DVCS, coherent and incoherent parts	Interplay between small-x evolution and confinement	Moderate x with light and heavy nuclei	Extend to low-x range (saturation region)

Key Measurements: Integrated gluon distribution: F2 and FL

- F_{2,L} extracted from pseudo-data generated at 3 EIC energies (2-4 fb⁻¹: 4 weeks/each)
 - 5+50 GeV
 - 5+75 GeV
 - 5+100 GeV
- Data, with errors, added to theoretical expectations from EPS09 PDF and rcBK
 - at $Q^2 = 2.7 \text{ GeV}^2$
 - $x = 10^{-3}$

Non-linear QCD in F_L

 $F_L^A(x,Q^2) \propto x \, G_A(x,Q^2)$ F_L^A is sensitive to higher twist (non-linear) effects

- Saturation inspired model GBW describes HERA ep data
- First such measurements for nuclei for x < 0.01
- wide energy range of EIC is essential for F_L

Key Measurements:

k_T dependent gluon distribution: Di-hadron correlation

- Multiple scattering in the dense nucleus at forward in dAu lead to mono-jet (decorrelation at $\Delta\Phi=\pi$) in CGC frame work (J.Albacete and C. Marquet, PRL 105 (2010))
- Estimated $x_A \sim 10^{-3}$

Di-hadron correlation at EIC

- EIC reach smaller-x regime with clean kinematic control in di-hadron correlation measurement
- EIC expected data from I0 fb⁻¹ integrated luminosity at 30(e)x I00(p/Au) GeV
 - estimated using Hybrid model: Pythia+nPDF+DPMJETIII (without saturation)
 - $Q^2 = |GeV^2| < x > = |x|0^{-4}$
 - hadron p_T cut: trigger / associate = 2 / I GeV/c
 - ~x2 suppression expected in eAu/ep with saturation
- Systematic differential measurement: crossing onset of saturation using \sqrt{s} , Q^2 , A

Di-hadron correlation vs x at EIC: Nuclear modification JeAu

- J_{eAu} relative yield of di-hadrons produced in eAu compared to ep collisions
- Curves from saturation model (B. Xiao (2012))

Key measurements:

Gluon spatial distribution and correlations in exclusive diffractive Vector Meson production

- Novel "strong" probe to investigate gluonic structure of nuclei: color dipole coherent and incoherent diffractive interaction: Sensitive to saturation (s,b,A)
- Large $\sigma_{\text{diff}}/\sigma_{\text{total}}$ in e+A at EIC (~25-40%)
- Coherent: Access to spatial distribution of gluons
 - Precise transverse imaging of the gluons
 - Modification due to small-x evolution
 - Tagging with Zero Degree Calorimeter
- Incoherent: Gluon correlations in the transverse plane

Exclusive diffractive vector meson production: J/Ψ and Φ

- probe (VM dipole size) dependent exclusive t-dependent production: yield and pattern to saturation
- with $A \int Ldt = 10$ fb⁻¹ with experimental smearing
- Simulation: Sartre (Tobias, Ullrich)

Exclusive Vector Meson in e+A

- Q² dependence of cross-section from coherent VM diffraction
 - \bullet $\sigma(eA)/\sigma(ep)$ saturation vs non-saturation
 - With $A \int Ldt = 10 \text{ fb}^{-1}$
 - Φ more sensitive to saturation effects than J/ψ due to a larger wave function

Coherent Diffraction (γ*+IP) in Ultra Peripheral Collisions at RHIC

- Coherent
 diffractive ρ
 production in Au
 +Au at √s_{NN}=200
 GeV
- Data: STAR/RHIC
 Ultra-peripheral
 AuAu Collision
- Simulation: Sartre

Key measurements:

Parton propagation and fragmentation in nuclear medium

- Nuclei as space-time analyzer
- EIC can measure
 - fragmentation time scale to understand dynamics
 - in medium energy loss to characterize medium
 - gluon bremsstrahlung: hadronization outside media
 - pre-hadron absorption: color neutralization inside the medium
- Observable
 - p_T distribution broadening: link to saturation
 - attenuation of hadrons (multiplicity ratio): energy loss mechanism

Summary

The new proposed versatile and high-luminosity electronlon collider (EIC) is to study one of the outstanding fundamental questions in QCD:

- Establish and explore new degree of freedom of gluonic property of matter - saturation regime by systematically studying the unprecedentedly accessed kinematic regime: gluon saturation at small-x to Q² evolution at large-x
- Study dynamics and fundamental properties of cold matter: through in-medium fragmentation and parton propagation
- Characterizing the initial gluon dynamics in eA is crucial to disentangle initial and final state effects in RHIC and LHC heavy-ion results